Researchers have found evidence that material contained in young oceanic lava flows originated at the Earth’s surface in the Archean era, more than 2 billions years ago.
Sulfur isotopes within iron sulfide inclusions in volcanic rocks, like this one from Iceland, demonstrate that sulfur derived from the Earth’s ancient atmosphere was preserved within the mantle for at least 2.54 billion years before coming back to the surface in eruptions at Mangaia volcano, South Pacific Ocean (Rita A. Cabral et al)
Scientists have long believed that lava erupted from certain oceanic volcanoes contains materials from the early Earth’s crust. But decisive evidence for this phenomenon has proven elusive. The new study, published in the journal Nature, demonstrates that oceanic volcanic rocks contain samples of recycled crust dating back to the Archean era.
Oceanic crust sinks into the Earth’s mantle at so-called subduction zones, where two plates come together. Much of what happens to the crust during this journey is unknown. Model-dependent studies for how long subducted material can exist in the mantle are uncertain and evidence of very old crust returning to Earth’s surface via upwellings of magma has not been found until now.
The researchers studied volcanic rocks from the island of Mangaia in Polynesia’s Cook Islands that contain iron sulfide inclusions within crystals. In-depth analysis of the chemical makeup of these samples yielded interesting results.
The study focused on isotopes of the element sulfur. The measurements looked at three of the four naturally occurring isotopes of sulfur with isotopic masses 32, 33, and 34. The sulfur-33 isotopes showed evidence of a chemical interaction with UV radiation that stopped occurring in Earth’s atmosphere about 2.45 billion years ago. It stopped after the Great Oxidation Event, a point in time when the Earth’s atmospheric oxygen levels skyrocketed as a consequence of oxygen-producing photosynthetic microbes. Prior to the Great Oxidation Event, the atmosphere lacked ozone. But once ozone was introduced, it started to absorb UV and shut down the process.
This indicates that the sulfur comes from a deep mantle reservoir containing crustal material subducted before the Great Oxidation Event and preserved for over half the age of the Earth.
“These measurements place the first firm age estimates of recycled material in oceanic hotspots,” said lead author Dr Erik Hauri from Carnegie Institution of Washington.
“They confirm the cycling of sulfur from the atmosphere and oceans into mantle and ultimately back to the surface.”
______
Bibliographic information: Rita A. Cabral et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493; doi: 10.1038/nature12020
Source link: https://www.sci.news/geology/article01037.html